Homeostatic Levels of p62 Control Cytoplasmic Inclusion Body Formation in Autophagy-Deficient Mice

نویسندگان

  • Masaaki Komatsu
  • Satoshi Waguri
  • Masato Koike
  • Yu-shin Sou
  • Takashi Ueno
  • Taichi Hara
  • Noboru Mizushima
  • Jun-ichi Iwata
  • Junji Ezaki
  • Shigeo Murata
  • Jun Hamazaki
  • Yasumasa Nishito
  • Shun-ichiro Iemura
  • Tohru Natsume
  • Toru Yanagawa
  • Junya Uwayama
  • Eiji Warabi
  • Hiroshi Yoshida
  • Tetsuro Ishii
  • Akira Kobayashi
  • Masayuki Yamamoto
  • Zhenyu Yue
  • Yasuo Uchiyama
  • Eiki Kominami
  • Keiji Tanaka
چکیده

Inactivation of constitutive autophagy results in formation of cytoplasmic protein inclusions and leads to liver injury and neurodegeneration, but the details of abnormalities related to impaired autophagy are largely unknown. Here we used mouse genetic analyses to define the roles of autophagy in the aforementioned events. We report that the ubiquitin- and LC3-binding protein "p62" regulates the formation of protein aggregates and is removed by autophagy. Thus, genetic ablation of p62 suppressed the appearance of ubiquitin-positive protein aggregates in hepatocytes and neurons, indicating that p62 plays an important role in inclusion body formation. Moreover, loss of p62 markedly attenuated liver injury caused by autophagy deficiency, whereas it had little effect on neuronal degeneration. Our findings highlight the unexpected role of homeostatic level of p62, which is regulated by autophagy, in controlling intracellular inclusion body formation, and indicate that the pathologic process associated with autophagic deficiency is cell-type specific.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inclusion bodies enriched for p62 and polyubiquitinated proteins in macrophages protect against atherosclerosis.

Autophagy is a catabolic cellular mechanism that degrades dysfunctional proteins and organelles. Atherosclerotic plaque formation is enhanced in mice with macrophages deficient for the critical autophagy protein ATG5. We showed that exposure of macrophages to lipids that promote atherosclerosis increased the abundance of the autophagy chaperone p62 and that p62 colocalized with polyubiquitinate...

متن کامل

Structural basis for sorting mechanism of p62 in selective autophagy.

Impairment of autophagic degradation of the ubiquitin- and LC3-binding protein "p62" leads to the formation of cytoplasmic inclusion bodies. However, little is known about the sorting mechanism of p62 to autophagic degradation. Here we identified a motif of murine p62 consisting of 11 amino acids (Ser334-Ser344) containing conserved acidic and hydrophobic residues across species, as an LC3 reco...

متن کامل

Defective autophagy in neurons and astrocytes from mice deficient in PI(3,5)P2

Mutations affecting the conversion of PI3P to the signaling lipid PI(3,5)P(2) result in spongiform degeneration of mouse brain and are associated with the human disorders Charcot-Marie-Tooth disease and amyotrophic lateral sclerosis (ALS). We now report accumulation of the proteins LC3-II, p62 and LAMP-2 in neurons and astrocytes of mice with mutations in two components of the PI(3,5)P(2) regul...

متن کامل

Depletion of p62 reduces nuclear inclusions and paradoxically ameliorates disease phenotypes in Huntington's model mice.

Huntington's disease (HD) is a dominantly inherited genetic disease caused by mutant huntingtin (htt) protein with expanded polyglutamine (polyQ) tracts. A neuropathological hallmark of HD is the presence of neuronal inclusions of mutant htt. p62 is an important regulatory protein in selective autophagy, a process by which aggregated proteins are degraded, and it is associated with several neur...

متن کامل

p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy.

Protein degradation by basal constitutive autophagy is important to avoid accumulation of polyubiquitinated protein aggregates and development of neurodegenerative diseases. The polyubiquitin-binding protein p62/SQSTM1 is degraded by autophagy. It is found in cellular inclusion bodies together with polyubiquitinated proteins and in cytosolic protein aggregates that accumulate in various chronic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 131  شماره 

صفحات  -

تاریخ انتشار 2007